Association of a Specific OsCULLIN3c Haplotype with Salt Stress Responses in Local Thai Rice

Author:

Herwibawa Bagus1ORCID,Lekklar Chakkree2ORCID,Chadchawan Supachitra34,Buaboocha Teerapong45

Affiliation:

1. Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

2. Biological Sciences Program, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

3. Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

4. Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

5. Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

Abstract

We previously found that OsCUL3c is involved in the salt stress response. However, there are no definitive reports on the diversity of OsCUL3c in local Thai rice. In this study, we showed that the CUL3 group was clearly separated from the other CUL groups; next, we focused on OsCUL3c, the third CUL3 of the CUL3 family in rice, which is absent in Arabidopsis. A total of 111 SNPs and 28 indels over the OsCUL3c region, representing 79 haplotypes (haps), were found. Haplotyping revealed that group I (hap A and hap C) and group II (hap B1 and hap D) were different mutated variants, which showed their association with phenotypes under salt stress. These results were supported by cis-regulatory elements (CREs) and transcription factor binding sites (TFBSs) analyses. We found that LTR, MYC, [AP2; ERF], and NF-YB, which are related to salt stress, drought stress, and the response to abscisic acid (ABA), have distinct positions and numbers in the haplotypes of group I and group II. An RNA Seq analysis of the two predominant haplotypes from each group showed that the OsCUL3c expression of the group I representative was upregulated and that of group II was downregulated, which was confirmed by RT-qPCR. Promoter changes might affect the transcriptional responses to salt stress, leading to different regulatory mechanisms for the expression of different haplotypes. We speculate that OsCUL3c influences the regulation of salt-related responses, and haplotype variations play a role in this regulation.

Funder

Second Century Fund (C2F) from Chulalongkorn University, Thailand

Universitas Diponegoro Postgraduate Scholarship, Indonesia

100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship

an Overseas Research Experience Scholarship for Graduate Students from the Graduate School, Chulalongkorn University, Thailand

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3