Association between High HbA1c Levels and Mast Cell Phenotype in the Infrapatellar Fat Pad of Patients with Knee Osteoarthritis

Author:

Tsukada Ayumi1,Takata Ken1,Aikawa Jun1,Iwase Dai1,Mukai Manabu1,Uekusa Yui1,Metoki Yukie1,Inoue Gen1ORCID,Miyagi Masayuki1ORCID,Takaso Masashi1,Uchida Kentaro12ORCID

Affiliation:

1. Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Kanagawa, Japan

2. Shonan University Medical Sciences Research Institute, Nishikubo 500, Chigasaki City 253-0083, Kanagawa, Japan

Abstract

Diabetes mellitus (DM) has been suggested as a potential risk factor for knee osteoarthritis (KOA), and its underlying mechanisms remain unclear. The infrapatellar fat pad (IPFP) contributes to OA through inflammatory mediator secretion. Mast cells’ (MCs) role in diabetic IPFP pathology is unclear. In 156 KOA patients, hemoglobin A1c (HbA1c) was stratified (HbA1c ≥ 6.5, n = 28; HbA1c < 6.5, n = 128). MC markers (TPSB2, CPA3) in IPFP were studied. Propensity-matched cohorts (n = 27 each) addressed demographic differences. MC-rich fraction (MC-RF) and MC-poor fraction (MC-PF) were isolated, comparing MC markers and genes elevated in diabetic skin-derived MC (PAXIP1, ARG1, HAS1, IL3RA). TPSB2 and CPA3 expression were significantly higher in HbA1c ≥ 6.5 vs. <6.5, both before and after matching. MC-RF showed higher TPSB2 and CPA3 expression than MC-PF in both groups. In the HbA1c ≥ 6.5 group, PAXIP1 and ARG1 expression were significantly higher in the MC-RF than MC-PF. However, no statistical difference in the evaluated genes was detected between the High and Normal groups in the MC-RF. Elevated TPSB2 and CPA3 levels in the IPFP of high HbA1c patients likely reflect higher numbers of MCs in the IPFP, though no difference was found in MC-specific markers on a cell-to-cell basis, as shown in the MC-RF comparison. These findings deepen our understanding of the intricate interplay between diabetes and KOA, guiding targeted therapeutic interventions.

Funder

JSPS KAKENHI

Kitasato University Research Grant

SRL, Inc.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3