Research on Autonomous Manoeuvre Decision Making in Within-Visual-Range Aerial Two-Player Zero-Sum Games Based on Deep Reinforcement Learning

Author:

Lu Bo12,Ru Le12,Hu Shiguang12ORCID,Wang Wenfei12,Xi Hailong12,Zhao Xiaolin12

Affiliation:

1. Equipment Management and UAV Engineering College, Air Force Engineering University, Xi’an 710051, China

2. National Key Lab of Unmanned Aerial Vehicle Technology, Air Force Engineering University, Xi’an 710051, China

Abstract

In recent years, with the accelerated development of technology towards automation and intelligence, autonomous decision-making capabilities in unmanned systems are poised to play a crucial role in contemporary aerial two-player zero-sum games (TZSGs). Deep reinforcement learning (DRL) methods enable agents to make autonomous manoeuvring decisions. This paper focuses on current mainstream DRL algorithms based on fundamental tactical manoeuvres, selecting a typical aerial TZSG scenario—within visual range (WVR) combat. We model the key elements influencing the game using a Markov decision process (MDP) and demonstrate the mathematical foundation for implementing DRL. Leveraging high-fidelity simulation software (Warsim v1.0), we design a prototypical close-range aerial combat scenario. Utilizing this environment, we train mainstream DRL algorithms and analyse the training outcomes. The effectiveness of these algorithms in enabling agents to manoeuvre in aerial TZSG autonomously is summarised, providing a foundational basis for further research.

Publisher

MDPI AG

Reference43 articles.

1. Han, R., Chen, H., Liu, Q., and Huang, J. (2021, January 22–24). Research on Autonomous Air Combat Maneuver Decision Making Based on Reward Shaping and D3QN. Proceedings of the 2021 China Automation Conference, Beijing, China.

2. Genetic fuzzy based artificial intelligence for unmanned combat aerial vehicle control in simulated air combat missions;Ernest;J. Def. Manag.,2016

3. Optimal maneuver-based motion planning over terrain and threats using a dynamic hybrid PSO algorithm;Karimi;Aerospaceence Technol.,2013

4. Improving maneuver strategy in air combat by alternate freeze games with a deep reinforcement learning algorithm;Wang;Math. Probl. Eng.,2020

5. Guidance and control for own aircraft in the autonomous air combat: A historical review and future prospects;Dong;Proc. Inst. Mech. Eng.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3