Discovery and Transcriptional Profiling of Penicillium digitatum Genes That Could Promote Fungal Virulence during Citrus Fruit Infection

Author:

Sánchez-Torres Paloma12ORCID,González-Candelas Luis2ORCID,Ballester Ana Rosa2ORCID

Affiliation:

1. Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, 46113 Valencia, Spain

2. Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, Paterna, 46980 Valencia, Spain

Abstract

Green mold caused by Penicillium digitatum (Pers.:Fr.) Sacc is the most prevalent postharvest rot concerning citrus fruits. Using the subtractive suppression hybridization (SSH) technique, different P. digitatum genes have been identified that could be involved in virulence during citrus infection in the early stages, a crucial moment that determines whether the infection progresses or not. To this end, a comparison of two P. digitatum strains with high and low virulence has been carried out. We conducted a study on the gene expression profile of the most relevant genes. The results indicate the importance of transcription and regulation processes as well as enzymes involved in the degradation of the plant cell wall. The most represented expressed sequence tag (EST) was identified as PDIP_11000, associated with the FluG domain, which is putatively involved in the activation of conidiation. It is also worth noting that PDIP_02280 encodes a pectin methyl esterase, a cell wall remodeling protein with a high expression level in the most virulent fungal strains, which is notably induced during citrus infection. Furthermore, within the group with the greatest representation and showing significant induction in the early stages of infection, regulatory proteins (PDIP_68700, PDIP_76160) and a chaperone (PDIP_38040) stand out. To a lesser extent, but not less relevant, it is worth distinguishing different regulatory proteins and transcription factors, such as PDIP_00580, PDIP_49640 and PDIP_78930.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3