Data Fusion Approach to Simultaneously Evaluate the Degradation Process Caused by Ozone and Humidity on Modern Paint Materials

Author:

Pagnin LauraORCID,Calvini RosalbaORCID,Sterflinger Katja,Izzo Francesca CaterinaORCID

Abstract

The knowledge of the atmospheric degradation reactions affecting the stability of modern materials is still of current interest. In fact, environmental parameters, such as relative humidity (RH), temperature, and pollutant agents, often fluctuate due to natural or anthropogenic climatic changes. This study focuses on evaluating analytical and statistical strategies to investigate the degradation processes of acrylic and styrene-acrylic paints after exposure to ozone (O3) and RH. A first comparison of FTIR and Py-GC/MS results allowed to obtain qualitative information on the degradation products and the influence of the pigments on the paints’ stability. The combination of these results represents a significant potential for the use of data fusion methods. Specifically, the datasets obtained by FTIR and Py-GC/MS were combined using a low-level data fusion approach and subsequently processed by principal component analysis (PCA). It allowed to evaluate the different chemical impact of the variables for the characterization of unaged and aged samples, understanding which paint is more prone to ozone degradation, and which aging variables most compromise their stability. The advantage of this method consists in simultaneously evaluating all the FTIR and Py-GC/MS variables and describing common degradation patterns. From these combined results, specific information was obtained for further suitable conservation practices for modern and contemporary painted films.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference78 articles.

1. A review of synthetic binding media in twentieth‐century paints

2. Modern Paints Uncovered;Learner,2007

3. Preliminary Investigations into Two New Acrylic Emulsion Paint Formulations: W&N Artists’ Acrylic Colours and Golden Open Acrylics;Ormsby;E-Preserv. Sci.,2012

4. Determination of some atmospheric pollutants inside a museum: relationship with the concentration outside

5. The Effects of Air Pollution on Cultural Heritage;Hamilton,2009

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3