Advanced Manufacturing in the Fabrication of a Lifelike Brain Glioblastoma Simulator for the Training of Neurosurgeons

Author:

Chen Pin-Chuan,Yang Yu-Wen,Lin Jang-Chun,Liu Wei-Hsiu

Abstract

Neurosurgeons require considerable expertise and practical experience to deal with the critical situations commonly encountered in complex surgical operations such as cerebral cancer; however, trainees in neurosurgery seldom have the opportunity to develop these skills in the operating room. Physical simulators can give trainees the experience they require. In this study, we adopted advanced molding and replication techniques in the fabrication of a physical simulator for use in practicing the removal of cerebral tumors. Our combination of additive manufacturing and molding technology with elastic material casting made it possible to create a simulator that realistically mimics the skull, brain stem, soft brain lobes, and cerebral cancer with cerebral tumors located precisely where they are likely to appear. Multiple and systematic experiments were conducted to prove that the elastic material used herein was appropriated for building professional medical physical simulator. One neurosurgical trainee reported that under the guidance of a senior neurosurgeon, the physical simulator helped to elucidate the overall process of cerebral cancer removal and provided a realistic impression of the tactile feelings involved in craniotomy. The trainee also learned how to make decisions when facing the infiltration of a cerebral tumor into normal brain lobes. Our results demonstrate the efficacy of the proposed physical simulator in preparing trainees for the rigors involved in performing highly delicate surgical operations.

Funder

Tri-Service General Hospital

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3