Effect of an Adaptive-Density Filling Structure on the Mechanical Properties of FDM Parts with a Variable Cross-Section

Author:

Liu JianORCID,Su Zhou,Wang Chenyue,Xu ZhuofeiORCID

Abstract

Fused deposition modeling (FDM) technique is one of the most popular additive manufacturing techniques. Infill density is a critical factor influencing the mechanical properties of 3D-printed components using the FDM technique. For irregular components with variable cross-sections, to increase their overall mechanical properties while maintaining a lightweight, it is necessary to enhance the local infill density of the thin part while decreasing the infill density of the thick part. However, most current slicing software can only generate a uniform infill throughout one model to be printed and cannot adaptively create a filling structure with a varying infill density according to the dimensional variation of the cross-section. In the present study, to improve the mechanical properties of irregular components with variable cross-sections, an adaptive-density filling structure was proposed, in which Hilbert curve with the same order was used to fill each slice, i.e., the level of the Hilbert curves in each slice is the same, but the side length of the Hilbert curve decreases with the decreasing size of each slice; hence, the infill density of the smaller cross-section is greater than that of the larger cross-section. The ultimate bearing capacity of printed specimens with the adaptive-density filling structure was evaluated by quasi-static compression, three-point bending, and dynamic compression tests, and the printed specimens with uniform filling structure and the same overall infill density were tested for comparison. The results show that the maximum flexural load, the ultimate compression load, and the maximum impact resistance of the printed specimens with the adaptive-density filling structure were increased by 140%, 47%, and 82%, respectively, compared with their counterparts using the uniform filling structure.

Funder

Natural Science Basic Research Plan in Shaanxi Province of China in 2022

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3