Progranulin Protects against Hyperglycemia-Induced Neuronal Dysfunction through GSK3β Signaling

Author:

Dedert Cass12ORCID,Salih Lyuba12,Xu Fenglian1234

Affiliation:

1. Department of Biology, College of Arts and Sciences, Saint Louis University, Saint Louis, MO 63103, USA

2. Institute for Translational Neuroscience, Saint Louis University, Saint Louis, MO 63103, USA

3. Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, Saint Louis, MO 63103, USA

4. Department of Biomedical Engineering, School of Science and Engineering, Saint Louis University, Saint Louis, MO 63103, USA

Abstract

Type II diabetes affects over 530 million individuals worldwide and contributes to a host of neurological pathologies. Uncontrolled high blood glucose (hyperglycemia) is a major factor in diabetic pathology, and glucose regulation is a common goal for maintenance in patients. We have found that the neuronal growth factor progranulin protects against hyperglycemic stress in neurons, and although its mechanism of action is uncertain, our findings identified Glycogen Synthase Kinase 3β (GSK3β) as being potentially involved in its effects. In this study, we treated mouse primary cortical neurons exposed to high-glucose conditions with progranulin and a selective pharmacological inhibitor of GSK3β before assessing neuronal health and function. Whole-cell and mitochondrial viability were both improved by progranulin under high-glucose stress in a GSK3β—dependent manner. This extended to autophagy flux, indicated by the expressions of autophagosome marker Light Chain 3B (LC3B) and lysosome marker Lysosome-Associated Membrane Protein 2A (LAMP2A), which were affected by progranulin and showed heterogeneous changes from GSK3β inhibition. Lastly, GSK3β inhibition attenuated downstream calcium signaling and neuronal firing effects due to acute progranulin treatment. These data indicate that GSK3β plays an important role in progranulin’s neuroprotective effects under hyperglycemic stress and serves as a jumping-off point to explore progranulin’s protective capabilities in other neurodegenerative models.

Funder

Saint Louis University Bridge Fund

Saint Louis University Health Research Fund

Sigma Xi Grants in Aid of Research

Saint Louis University Knoedler Fund

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3