Inverse Regulation of Cartilage Neogenesis at Physiologically Relevant Calcium Conditions by Human Articular Chondrocytes and Mesenchymal Stromal Cells

Author:

Hammersen Tim1,Buchert Justyna1,Zietzschmann Severin2,Diederichs Solvig1ORCID,Richter Wiltrud1ORCID

Affiliation:

1. Research Center for Experimental Orthopaedics, Department of Orthopaedics, Heidelberg University Hospital, 69118 Heidelberg, Germany

2. Orthopaedic Hospital, Department of Orthopaedics, Heidelberg University Hospital, 69118 Heidelberg, Germany

Abstract

Elaborate bioreactor cultivation or expensive growth factor supplementation can enhance extracellular matrix production in engineered neocartilage to provide sufficient mechanical resistance. We here investigated whether raising extracellular calcium levels in chondrogenic cultures to physiologically relevant levels would provide a simple and inexpensive alternative to enhance cartilage neogenesis from human articular chondrocytes (AC) or bone marrow-derived mesenchymal stromal cells (BMSC). Interestingly, AC and BMSC-derived chondrocytes showed an opposite response to a calcium increase from 1.8 mM to 8 mM by which glycosaminoglycan (GAG) and collagen type II production were elevated during BMSC chondrogenesis but depressed in AC, leading to two-fold higher GAG/DNA values in BMSC-based neocartilage compared to the AC group. According to control treatments with Mg2+ or sucrose, these effects were specific for CaCl2 rather than divalent cations or osmolarity. Importantly, undesired pro-hypertrophic traits were not stimulated by calcium treatment. Specific induction of PTHrP mRNA and protein by 8.0mM calcium only in AC, along with negative effects of recombinant PTHrP1-34 on cartilage matrix production, suggested that the PTHrP pathway contributed to the detrimental effects in AC-based neocartilage. Altogether, raising extracellular calcium levels was discovered as a novel, simple and inexpensive stimulator for BMSC-based cartilage neogenesis without the need for special bioreactors, whereas such conditions should be avoided for AC.

Funder

Heidelberg Orthopaedic University Hospital

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3