The Transcription Factor HOXA5: Novel Insights into Metabolic Diseases and Adipose Tissue Dysfunction

Author:

Parrillo Luca1ORCID,Spinelli Rosa12ORCID,Longo Michele1ORCID,Zatterale Federica1ORCID,Santamaria Gianluca3ORCID,Leone Alessia1,Campitelli Michele1,Raciti Gregory Alexander1ORCID,Beguinot Francesco1

Affiliation:

1. URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy

2. Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden

3. Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy

Abstract

The transcription factor HOXA5, from the HOX gene family, has long been studied due to its critical role in physiological activities in normal cells, such as organ development and body patterning, and pathological activities in cancer cells. Nonetheless, recent evidence supports the hypothesis of a role for HOXA5 in metabolic diseases, particularly in obesity and type 2 diabetes (T2D). In line with the current opinion that adipocyte and adipose tissue (AT) dysfunction belong to the group of primary defects in obesity, linking this condition to an increased risk of insulin resistance (IR) and T2D, the HOXA5 gene has been shown to regulate adipocyte function and AT remodeling both in humans and mice. Epigenetics adds complexity to HOXA5 gene regulation in metabolic diseases. Indeed, epigenetic mechanisms, specifically DNA methylation, influence the dynamic HOXA5 expression profile. In human AT, the DNA methylation profile at the HOXA5 gene is associated with hypertrophic obesity and an increased risk of developing T2D. Thus, an inappropriate HOXA5 gene expression may be a mechanism causing or maintaining an impaired AT function in obesity and potentially linking obesity to its associated disorders. In this review, we integrate the current evidence about the involvement of HOXA5 in regulating AT function, as well as its association with the pathogenesis of obesity and T2D. We also summarize the current knowledge on the role of DNA methylation in controlling HOXA5 expression. Moreover, considering the susceptibility of epigenetic changes to reversal through targeted interventions, we discuss the potential therapeutic value of targeting HOXA5 DNA methylation changes in the treatment of metabolic diseases.

Funder

Ministero dell’Università e della Ricerca

Ministero della Salute

Publisher

MDPI AG

Subject

General Medicine

Reference98 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3