Urothelial Oxidative Stress and ERK Activation Mediate HMGB1-Induced Bladder Pain

Author:

Ye Shaojing1,Mahmood Dlovan F. D.1,Ma Fei1,Leng Lin2ORCID,Bucala Richard2,Vera Pedro L.13

Affiliation:

1. Lexington VA Health Care System, Research & Development, Lexington, KY 40502, USA

2. Department of Internal Medicine, Yale University, New Haven, CT 06510, USA

3. Department of Physiology, University of Kentucky, Lexington, KY 40506, USA

Abstract

Activation of intravesical protease activated receptors-4 (PAR4) results in bladder pain through the release of urothelial macrophage migration inhibitory factor (MIF) and high mobility group box-1 (HMGB1). We aimed to identify HMGB1 downstream signaling events at the bladder that mediate HMGB1-induced bladder pain in MIF-deficient mice to exclude any MIF-related effects. We studied whether oxidative stress and ERK activation are involved by examining bladder tissue in mice treated with intravesical disulfide HMGB1 for 1 h and analyzed with Western blot and immunohistochemistry. HMGB1 intravesical treatment increased urothelium 4HNE and phospho-ERK1/2 staining, suggesting that HMGB1 increased urothelial oxidative stress and ERK activation. Furthermore, we examined the functional roles of these events. We evaluated lower abdominal mechanical thresholds (an index of bladder pain) before and 24 h after intravesical PAR4 or disulfide HMGB1. Intravesical pre-treatments (10 min prior) included: N-acetylcysteine amide (NACA, reactive oxygen species scavenger) and FR180204 (FR, selective ERK1/2 inhibitor). Awake micturition parameters (voided volume; frequency) were assessed at 24 h after treatment. Bladders were collected for histology at the end of the experiment. Pre-treatment with NACA or FR significantly prevented HMGB1-induced bladder pain. No significant effects were noted on micturition volume, frequency, inflammation, or edema. Thus, HMGB1 activates downstream urothelial oxidative stress production and ERK1/2 activation to mediate bladder pain. Further dissection of HMGB1 downstream signaling pathway may lead to novel potential therapeutic strategies to treat bladder pain.

Funder

NIH

Lexington (Kentucky) VA Health Care System

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3