NLRP3 Inflammasome as a Potentially New Therapeutic Target of Mesenchymal Stem Cells and Their Exosomes in the Treatment of Inflammatory Eye Diseases

Author:

Harrell Carl Randall1ORCID,Djonov Valentin2ORCID,Antonijevic Ana3,Volarevic Vladislav34ORCID

Affiliation:

1. Regenerative Processing Plant, LLC, 34176 US Highway 19 N, Palm Harbor, FL 34684, USA

2. Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland

3. Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia

4. Department of Genetics and Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia

Abstract

Due to their potent immunoregulatory and angio-modulatory properties, mesenchymal stem cells (MSCs) and their exosomes (MSC-Exos) have emerged as potential game-changers in regenerative ophthalmology, particularly for the personalized treatment of inflammatory diseases. MSCs suppress detrimental immune responses in the eyes and alleviate ongoing inflammation in ocular tissues by modulating the phenotype and function of all immune cells that play pathogenic roles in the development and progression of inflammatory eye diseases. MSC-Exos, due to their nano-sized dimension and lipid envelope, easily bypass all barriers in the eyes and deliver MSC-sourced bioactive compounds directly to target cells. Although MSCs and their exosomes offer a novel approach to treating immune cell-driven eye diseases, further research is needed to optimize their therapeutic efficacy. A significant number of experimental studies is currently focused on the delineation of intracellular targets, which crucially contribute to the immunosuppressive and anti-inflammatory effects of MSCs and MSC-Exos. The activation of NLRP3 inflammasome induces programmed cell death of epithelial cells, induces the generation of inflammatory phenotypes in eye-infiltrated immune cells, and enhances the expression of adhesion molecules on ECs facilitating the recruitment of circulating leukocytes in injured and inflamed eyes. In this review article, we summarize current knowledge about signaling pathways that are responsible for NLRP3 inflammasome-driven intraocular inflammation and we emphasize molecular mechanisms that regulate MSC-based modulation of NLRP3-driven signaling in eye-infiltrated immune cells, providing evidence that NLRP3 inflammasome should be considered a potentially new therapeutic target for MSCs and MSC-Exo-based treatment of inflammatory eye diseases.

Funder

Faculty of Medical Sciences University of Kragujevac

Ministry of Science Republic of Serbia

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3