An Evaluation of the Effect of Fuel Injection on the Performance and Emission Characteristics of a Diesel Engine Fueled with Plastic-Oil–Hydrogen–Diesel Blends

Author:

Reddy Kodandapuram Jayasimha12ORCID,Rao Gaddale Amba Prasad1,Reddy Reddygari Meenakshi2ORCID,Rajak Upendra3ORCID

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology Warangal, Warangal AP-506004, India

2. Department of Mechanical Engineering, G. Pulla Reddy Engineering College, Kurnool AP-518007, India

3. Department of Mechanical Engineering, RGM College of Engineering and Technology, Nandyal AP-518501, India

Abstract

Fuelled engines serve as prime movers in low-, medium-, and heavy-duty applications with high thermal diesel efficiency and good fuel economy compared to their counterpart, spark ignition engines. In recent years, diesel engines have undergone a multitude of developments, however, diesel engines release high levels of NOx, smoke, carbon monoxide [CO], and hydrocarbon [HC] emissions. Due to the exponential growth in fleet population, there is a severe burden caused by petroleum-derived fuels. To tackle both fuel and pollution issues, the research community has developed strategies to use economically viable alternative fuels. The present experimental investigations deal with the use of blends of biodiesel prepared from waste plastic oil [P] and petro-diesel [D], and, to improve its performance, hydrogen [H] is added in small amounts. Further, advanced injection timings have been adopted [17.5° to 25.5° b TDC (before top dead centre)] to study their effect on harmful emissions. Hydrogen energy shares vary from 5 to 15%, maintaining a biodiesel proportion of 20%, and the remaining is petro-diesel. Thus, the adopted blends are DP20 ((diesel fuel (80%) and waste plastic biofuel (20%)), DP20H5 (DP20 (95%) and hydrogen (5%)), DP20H10 (DP20 (90%) and hydrogen (10%)), and DP20H15 (DP20 (85%) and hydrogen (15%)). The experiments were conducted at constant speeds with a rated injection pressure of 220 bar and a rated compression ratio of 18. The increase in the share of hydrogen led to a considerable improvement in the performance. Under full load conditions, with advanced injection timings, the brake-specific fuel consumption had significantly decreased and NOx emissions increased.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3