Seismic Response and Mitigation Analysis of a Subway Station in the Site with Weak Interlayers

Author:

Xu Zigang1,Li Chunyu1,Xia Zongyao1,Han Runbo2

Affiliation:

1. State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure, East China Jiaotong University, Nanchang 330013, China

2. School of Resources, Environment and Architectural Engineering, Chifeng University, Chifeng 024000, China

Abstract

Challenges related to seismic performance and seismic mitigation are more pronounced in the presence of weak interlayers compared to typical layered soil conditions. This study focuses on a double-layer double-span rectangular frame subway station structure. A coupled static–dynamic finite element analysis model of the soil-structure system is established by using the finite element software ABAQUS/CAE V 6.14. The research investigates the influence of factors such as interlayer thickness, location, and strength on the seismic response of subway station structures. Furthermore, in order to evaluate the effectiveness of FPB in mitigating seismic effects in the weak interlayer ground, two different schemes are proposed in this paper. One is the structure without FPB and the other is the structure with FPB on the top of the central column. The findings reveal that weak interlayers exert a significant influence on the seismic response of subway station structures, especially when these lower-strength weak interlayers are located within the central portion of the subway station structure and exhibit considerable thickness. The FPB on the top of the central column can reduce the overall lateral stiffness of the subway station structure. This, in turn, results in a slight increase in the deformation of sidewall and inter-story displacement angles, accompanied by a marginal exacerbation of sidewall damage. However, the implementation of FPB effectively reduces the deformation of the central column and substantially mitigates the extent of damage to the central column.

Funder

National Natural Science Foundation of China

Youth Talent Support Project Program of Jiangxi Province

Natural Science Foundation of Jiangxi Province

Natural Science Foundation of Inner Mongolia Autonomous Region

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3