Assessment of Self-Supervised Denoising Methods for Esophageal Speech Enhancement

Author:

Amarjouf Madiha1ORCID,Ibn Elhaj El Hassan1,Chami Mouhcine2,Ezzine Kadria3ORCID,Di Martino Joseph3

Affiliation:

1. Research Laboratory in Telecommunications Systems: Networks and Services (STRS), Research Team: Multimedia, Signal and Communications Systems (MUSICS), National Institute of Posts and Telecommunications (INPT), Av. Allal Al Fassi, Rabat 10112, Morocco

2. Research Laboratory in Telecommunications Systems: Networks and Services (STRS), Research Team: Secure and Mixed Architecture for Reliable Technologies and Systems (SMARTS), National Institute of Posts and Telecommunications (INPT), Av. Allal Al Fassi, Rabat 10112, Morocco

3. LORIA-Laboratoire Lorrain de Recherche en Informatique et ses Applications, B.P. 239, 54506 Vandœuvre-lès-Nancy, France

Abstract

Esophageal speech (ES) is a pathological voice that is often difficult to understand. Moreover, acquiring recordings of a patient’s voice before a laryngectomy proves challenging, thereby complicating enhancing this kind of voice. That is why most supervised methods used to enhance ES are based on voice conversion, which uses healthy speaker targets, things that may not preserve the speaker’s identity. Otherwise, unsupervised methods for ES are mostly based on traditional filters, which cannot alone beat this kind of noise, making the denoising process difficult. Also, these methods are known for producing musical artifacts. To address these issues, a self-supervised method based on the Only-Noisy-Training (ONT) model was applied, consisting of denoising a signal without needing a clean target. Four experiments were conducted using Deep Complex UNET (DCUNET) and Deep Complex UNET with Complex Two-Stage Transformer Module (DCUNET-cTSTM) for assessment. Both of these models are based on the ONT approach. Also, for comparison purposes and to calculate the evaluation metrics, the pre-trained VoiceFixer model was used to restore the clean wave files of esophageal speech. Even with the fact that ONT-based methods work better with noisy wave files, the results have proven that ES can be denoised without the need for clean targets, and hence, the speaker’s identity is retained.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3