Advanced State of Charge Estimation Using Deep Neural Network, Gated Recurrent Unit, and Long Short-Term Memory Models for Lithium-Ion Batteries under Aging and Temperature Conditions

Author:

El Fallah Saad1,Kharbach Jaouad1ORCID,Vanagas Jonas2,Vilkelytė Živilė2,Tolvaišienė Sonata2,Gudžius Saulius3,Kalvaitis Artūras3,Lehmam Oumayma1,Masrour Rachid1ORCID,Hammouch Zakia456,Rezzouk Abdellah1ORCID,Ouazzani Jamil Mohammed7

Affiliation:

1. Laboratoire de Physique de Solide, Faculté des Sciences Dhar El Mahraz, Université Sidi Mohamed Ben Abdellah, B.P. 1796, Fès 30003, Morocco

2. Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania

3. Faculty of Electrical and Electronics Engineering, Kaunas University of Technology, 51347 Kaunas, Lithuania

4. Division of Applied Mathematics, Thu Dau Mot University, Thu Dau Mot 75100, Vietnam

5. Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan

6. Département des Sciences, École Normale Supérieure, Moulay Ismail University, Meknes 50000, Morocco

7. Laboratoire Systèmes et Environnements Durables, Université Privée de Fès, Lot. Quaraouiyine Route Ain Chkef, Fès 30040, Morocco

Abstract

Accurate estimation of the state of charge (SoC) of lithium-ion batteries is crucial for battery management systems, particularly in electric vehicle (EV) applications where real-time monitoring ensures safe and robust operation. This study introduces three advanced algorithms to estimate the SoC: deep neural network (DNN), gated recurrent unit (GRU), and long short-term memory (LSTM). The DNN, GRU, and LSTM models are trained and validated using laboratory data from a lithium-ion 18650 battery and simulation data from Matlab/Simulink for a LiCoO2 battery cell. These models are designed to account for varying temperatures during charge/discharge cycles and the effects of battery aging due to cycling. This paper is the first to estimate the SoC by a deep neural network using a variable current profile that provides the SoC curve during both the charge and discharge phases. The DNN model is implemented in Matlab/Simulink, featuring customizable activation functions, multiple hidden layers, and a variable number of neurons per layer, thus providing flexibility and robustness in the SoC estimation. This approach uniquely integrates temperature and aging effects into the input features, setting it apart from existing methodologies that typically focus only on voltage, current, and temperature. The performance of the DNN model is benchmarked against the GRU and LSTM models, demonstrating superior accuracy with a maximum error of less than 2.5%. This study highlights the effectiveness of the DNN algorithm in providing a reliable SoC estimation under diverse operating conditions, showcasing its potential for enhancing battery management in EV applications.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3