Functional Characterization of Six Eukaryotic Translation Initiation Factors of Toxoplasma gondii Using the CRISPR-Cas9 System

Author:

Kou Yong-Jie12ORCID,Gao Jin12,Li Rui2,Ma Zhi-Ya1,Elsheikha Hany M.3ORCID,Wu Xiao-Jing12,Zheng Xiao-Nan1,Wang Meng24,Zhu Xing-Quan1ORCID

Affiliation:

1. Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China

2. State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China

3. Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK

4. Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China

Abstract

Eukaryotic translation initiation factors (eIFs) are crucial for initiating protein translation and ensuring the correct assembly of mRNA-ribosomal subunit complexes. In this study, we investigated the effects of deleting six eIFs in the apicomplexan parasite Toxoplasma gondii using the CRISPR-Cas9 system. We determined the subcellular localization of these eIFs using C-terminal endogenous tagging and immunofluorescence analysis. Four eIFs (RH::315150-6HA, RH::286090-6HA, RH::249370-6HA, and RH::211410-6HA) were localized in the cytoplasm, while RH::224235-6HA was localized in the apicoplast. Additionally, RH::272640-6HA was found in both the basal complex and the cytoplasm of T. gondii. Functional characterization of the six RHΔeIFs strains was conducted using plaque assay, cell invasion assay, intracellular growth assay and egress assay in vitro, and virulence assay in mice. Disruption of five eIF genes (RHΔ315150, RHΔ272640, RHΔ249370, RHΔ211410, and RHΔ224235) did not affect the ability of the T. gondii RH strain to invade, replicate, form plaques and egress in vitro, or virulence in Kunming mice (p > 0.05). However, the RHΔ286090 strain showed slightly reduced invasion efficiency and virulence (p < 0.01) compared to the other five RHΔeIFs strains and the wild-type strain. The disruption of the TGGT1_286090 gene significantly impaired the ability of tachyzoites to differentiate into bradyzoites in both type I RH and type II Pru strains. These findings reveal that the eukaryotic translation initiation factor TGGT1_286090 is crucial for T. gondii bradyzoite differentiation and may serve as a potential target for drug development and an attenuated vaccine against T. gondii.

Funder

National Natural Science Foundation of China

NSFC–Yunnan Joint Fund

Natural Science Foundation of Gansu Province, China

Special Research Fund of Shanxi Agricultural University for High-level Talents

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3