Semi-Automatic Detection of Ground Displacement from Multi-Temporal Sentinel-1 Synthetic Aperture Radar Interferometry Analysis and Density-Based Spatial Clustering of Applications with Noise in Xining City, China

Author:

Chen Dianqiang1ORCID,Wu Qichen123,Sun Zhongjin4,Shi Xuguo1ORCID,Zhang Shaocheng1ORCID,Zhang Yi5ORCID,Wu Yunlong15ORCID

Affiliation:

1. School of Geography and Information Engineering, China University of Geosciences, Wuhan 430078, China

2. No. 1 Geological Team of Shandong Provincial Bureau of Geology and Mineral Resources, Jinan 250014, China

3. Key Laboratory of Cableways Intelligent Deformation Monitoring and Smart Airport Construction of Shandong Provincial Bureau of Geology & Mineral Resources, Jinan 250013, China

4. Shandong Provincial Geology Construction Ltd., Jining 272100, China

5. Key Laboratory of Geological Survey and Evaluation of Ministry of Education, China University of Geosciences, Wuhan 430074, China

Abstract

The China Loess Plateau (CLP) is the world’s most extensive and thickest region of loess deposits. The inherently loose structure of loess makes the CLP particularly vulnerable to geohazards such as landslides, collapses, and subsidence, resulting in substantial geological and environmental challenges. Xining City, situated at the northwest edge of the CLP, is especially prone to frequent geological hazards due to intensified human activities and natural forces. Synthetic Aperture Radar Interferometry (InSAR) has become a widely used tool for identifying landslide hazards and displacement monitoring because of its high accuracy, low cost, and wide coverage. In this study, we utilized the small baseline subset (SBAS) InSAR technique to derive the line of sight (LOS) displacements of Xining City using Sentinel-1 datasets from ascending and descending orbits between October 2014 and September 2022. By integrating LOS displacements from the two datasets, we retrieved the eastward and vertical displacements to characterize the kinematics of active slopes. To identify the active areas semi-automatically, we applied the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm to cluster InSAR measurement points (IMPs). Forty-eight active slopes with areas ranging from 0.0049 to 0.5496 km2 and twenty-five subsidence-dominant areas ranging from 0.023 to 3.123 km2 were identified across Xining City. Kinematics analysis of the Jiujiawan landslide indicated that acceleration started in August 2016, likely triggered by rainfall, and continued until the landslide. The extreme rainfall in August 2022 may have pushed the Jiujiawan landslide beyond its critical threshold, leading to instability. Additionally, the study identified nine active slopes that threaten the normal operation of the Lanzhou–Xinjiang High-Speed Railway, with kinematic analysis suggesting rainfall-related accelerations. The influence of anthropogenic activities on ground displacements in loess areas was also confirmed through time series displacement analysis. Our results can be leveraged for geohazard prevention and management in Xining City. As SAR image data continue to accumulate, InSAR can serve as a regular tool for maintaining up-to-date landslide inventories, thereby contributing to more sustainable geohazard management.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3