Study on the Modification of Silty Soil Sites Using Nanosilica and Methylsilicate

Author:

Cao Pengke1,Ma Qingwen1,Zha Mingming1,Zhang Jian1ORCID,Huo Zijian1

Affiliation:

1. School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China

Abstract

The special particle grading properties of silt lead to the strong water sensitivity and low soil strength of silt sites, many of which are severely damaged and urgently need to be repaired. This article takes the powder soil from a certain burial site area in Xizhu Village, Luoyang as the research object, which is improved by adding nanosilica and potassium methylsilicate. The modified soil is studied through mechanical and waterproof performance tests, and the mechanism of action of the modified material is analyzed through SEM and XRD. The experimental results show that the mechanical properties and waterproof properties of the composite modified soil were improved when the nanosilica content was 2% and the potassium methylsilicate content was 0.5%; the durability of the composite modified soil is improved, making this the optimum ratio. The mechanical properties and water resistance of the silty soil were significantly improved by adding the appropriate amount of nanosilica and potassium methylsilicate. Nanosilica can be evenly dispersed in the soil matrix, absorb a small amount of water to form a gel state, fill the pores in the silt aggregates, and improve soil compactness. In addition, nanosilica aggregates can attach to the surface of the soil particles and extend from the particle surface to the particle edge. By increasing the contact between soil particles and increasing the particle size, the mechanical properties of the modified soil are improved. When potassium methylsilicate solution is added to the soil, it reacts with water and carbon dioxide, decomposes into methylsilicate, and quickly generates a polymethylsiloxane film to cover the surface of soil particles, forming a waterproof film on the surface and thereby improving the waterproof performance of modified soil. Our research results can provide a reference for the restoration and protection of silty and silt-like sites. The next step is to apply the composite modified soil in engineering restoration through field tests in order to study the repairing ability of composite modified soil and its actual protective effects.

Funder

Research and Development of Technology and Equipment for Preventing and Controlling Loess Catastrophic Risk in Extreme Weather in 2022

Key Scientific and Technological Research Project in Henan Province in 2022

Publisher

MDPI AG

Subject

General Materials Science

Reference26 articles.

1. Bai, Y. (2017). Research on the Application of Photoscan Multi-Angle 3D Reconstruction Technology in the Protection of Earth Sites. [Master’s Thesis, Northwest University].

2. Present situation and progress of research on the protection of earthen sites;Sun;Sci. Conserv. Archaeol.,2007

3. Research progress and engineering application of repairing materials for earthen sites;Lv;Relics Museol.,2015

4. Study on the Reinforcement of Ancient Earth Architecture Sites;Li;Dunhuang Res.,1995

5. New progress in research on protection and reinforcement of ancient earthen architecture sites;Li;Dunhuang Res.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3