Cross Entropy in Deep Learning of Classifiers Is Unnecessary—ISBE Error Is All You Need

Author:

Skarbek Władysław1ORCID

Affiliation:

1. Faculty of Electronics and Information Technology, Warsaw University of Technology, 00-661 Warszawa, Poland

Abstract

In deep learning of classifiers, the cost function usually takes the form of a combination of SoftMax and CrossEntropy functions. The SoftMax unit transforms the scores predicted by the model network into assessments of the degree (probabilities) of an object’s membership to a given class. On the other hand, CrossEntropy measures the divergence of this prediction from the distribution of target scores. This work introduces the ISBE functionality, justifying the thesis about the redundancy of cross-entropy computation in deep learning of classifiers. Not only can we omit the calculation of entropy, but also, during back-propagation, there is no need to direct the error to the normalization unit for its backward transformation. Instead, the error is sent directly to the model’s network. Using examples of perceptron and convolutional networks as classifiers of images from the MNIST collection, it is observed for ISBE that results are not degraded with SoftMax only but also with other activation functions such as Sigmoid, Tanh, or their hard variants HardSigmoid and HardTanh. Moreover, savings in the total number of operations were observed within the forward and backward stages. The article is addressed to all deep learning enthusiasts but primarily to programmers and students interested in the design of deep models. For example, it illustrates in code snippets possible ways to implement ISBE functionality but also formally proves that the SoftMax trick only applies to the class of dilated SoftMax functions with relocations.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference32 articles.

1. Schmidhuber, J. (2022). Annotated History of Modern AI and Deep Learning. arXiv.

2. The Perceptron: A Probabilistic Model For Information Storage and Organization in the Brain;Rosenblatt;Psychol. Rev.,1958

3. A theory of adaptive pattern classifier;Amari;IEEE Trans. Electron. Comput.,1967

4. Golden, R.M. (1996). Mathematical Methods for Neural Network Analysis and Design, The MIT Press.

5. Fergus, P., and Chalmers, C. (2022). Applied Deep Learning—Tools, Techniques, and Implementation, Springer.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3