Materials Design and Development of Photocatalytic NOx Removal Technology

Author:

Bari Gazi A. K. M. Rafiqul1ORCID,Islam Mobinul2ORCID,Jeong Jae-Ho1

Affiliation:

1. School of Mechanical Smart and Industrial Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea

2. Department of Energy & Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea

Abstract

Nitrogen oxide (NOx) pollutants have a significant impact on both the environment and human health. Photocatalytic NOx removal offers a sustainable and eco-friendly approach to combatting these pollutants by harnessing renewable solar energy. Photocatalysis demonstrates remarkable efficiency in removing NOx at sub-scale levels of parts per billion (ppb). The effectiveness of these catalysts depends on various factors, including solar light utilization efficiency, charge separation performance, reactive species adsorption, and catalytic reaction pathway selectivity. Moreover, achieving high stability and efficient photocatalytic activity necessitates a multifaceted materials design strategy. This strategy encompasses techniques such as ion doping, defects engineering, morphology control, heterojunction construction, and metal decoration on metal- or metal oxide-based photocatalysts. To optimize photocatalytic processes, adjustments to band structures, optimization of surface physiochemical states, and implementation of built-in electric field approaches are imperative. By addressing these challenges, researchers aim to develop efficient and stable photocatalysts, thus contributing to the advancement of environmentally friendly NOx removal technologies. This review highlights recent advancements in photocatalytic NOx removal, with a focus on materials design strategies, intrinsic properties, fundamental developmental aspects, and performance validation. This review also presents research gaps, emphasizing the need to understand the comprehensive mechanistic photocatalytic process, favored conditions for generating desired reactive species, the role of water concentration, temperature effects, inhibiting strategies for photocatalyst-deactivating species, and the formation of toxic NO2.

Funder

Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3