Vanadium-Doped Bi2S3@Co1−xS Heterojunction Nanofibers as High-Capacity and Long-Cycle-Life Anodes

Author:

Yang Haomiao1,Liu Lehao1ORCID,Wu Zhuoheng1,Zhang Jinkui1,Song Chenhui1,Li Yingfeng1

Affiliation:

1. School of New Energy, North China Electric Power University, Beijing 102206, China

Abstract

Lithium-ion batteries (LIBs) are considered one of the most important solutions for energy storage; however, conventional graphite anodes possess limited specific capacity and rate capability. Bismuth sulfide (Bi2S3) and cobalt sulfide (Co1−xS) with higher theoretical capacities have emerged as promising alternatives, but they face challenges such as significant volume expansion during electrochemical cycling and poor electrical conductivity. To tackle these problems, vanadium was doped into Bi2S3 to improve its electronic conductivity; subsequently, a vanadium-doped Bi2S3 (V-Bi2S3)@Co1−xS heterojunction structure was synthesized via a facile hydrothermal method to mitigate volume expansion by the closely bonded heterojunction interface. Moreover, the built-in electric field (BEF) created at the heterointerfaces can significantly enhance charge transport and facilitate reaction kinetics. Additionally, the nanofiber morphology of the V-Bi2S3@Co1−xS heterojunction structure further contributed to improved electrochemical performance. As a result, the V-Bi2S3 electrode exhibited better electrochemical performance than the pure Bi2S3 electrode, and the V-Bi2S3@Co1−xS electrode showed a significantly enhanced performance compared to the V-Bi2S3 electrode. The V-Bi2S3@Co1−xS heterojunction electrode displayed a high capacity of 412.5 mAh g−1 after 2000 cycles at 1.0 A g−1 with high coulombic efficiencies of ~100%, indicating a remarkable long-term cycling stability.

Funder

National Natural Science Foundation of China

Hebei Natural Science Foundation

State Key Laboratory of Alternate Electrical Power Systems with Renewable Energy Sources

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

NCEPU “Double First-Class” Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3