Noninvasive Continuous Glucose Monitoring Using Multimodal Near-Infrared, Temperature, and Pressure Signals on the Earlobe

Author:

Kim Jongdeog1ORCID,Kim Bong Kyu1,Park Mi-Ryong2ORCID,Cho Hyoyoung1,Huh Chul1ORCID

Affiliation:

1. Digital Biomedical Research Division, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea

2. Terrestrial and Non-Terrestrial Integrated Telecommunications Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea

Abstract

This study investigates a noninvasive continuous glucose monitoring (NI-CGM) system optimized for earlobe application, leveraging the site’s anatomical advantages—absence of bone, muscle, and thick skin—for enhanced optical transmission. The system integrates multimodal sensing, combining near-infrared (NIR) diffuse transmission with temperature and pressure sensors. A novel Multi-Wavelength Slope Efficiency Near-Infrared Spectroscopy (MW-SE-NIRS) method is introduced, enhancing noise robustness through the slope efficiency-based parameterization of NIR signal dynamics. By employing three NIR wavelengths with distinct scattering and absorption properties, the method improves glucose detection reliability, addressing tissue heterogeneity and physiological noise in noninvasive monitoring. To validate the feasibility, a pilot clinical trial enrolled five participants with normal or pre-diabetic glucose profiles. Continuous glucose data capturing pre- and postprandial variations were analyzed using a 1D convolutional neural network (Conv1D). For three subjects under stable physiological conditions, the model achieved 97.0% Clarke error grid (CEG) A-Zone accuracy and a mean absolute relative difference (MARD) of 5.2%. Across all participants, results showed 90.9% CEG A-Zone accuracy and a MARD of 8.4%, with performance variations linked to individual factors such as earlobe thickness variability and physical activity. These outcomes demonstrate the potential of the MW-SE-NIRS system for noninvasive glucose monitoring and highlight the importance of future work on personalized modeling, sensor optimization, and larger-scale clinical validation.

Funder

Ministry of Trade, Industry and Energy (MOTIE) in the Republic of Korea

ETRI in the Republic of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3