Predicting Fluid Intelligence via Naturalistic Functional Connectivity Using Weighted Ensemble Model and Network Analysis

Author:

Liu Xiaobo,Yang Su,Liu Zhengxian

Abstract

Objectives: Functional connectivity triggered by naturalistic stimuli (e.g., movie clips), coupled with machine learning techniques provide great insight in exploring brain functions such as fluid intelligence. However, functional connectivity is multi-layered while traditional machine learning is based on individual model, which is not only limited in performance, but also fails to extract multi-dimensional and multi-layered information from the brain network. Methods: In this study, inspired by multi-layer brain network structure, we propose a new method, namely weighted ensemble model and network analysis, which combines machine learning and graph theory for improved fluid intelligence prediction. Firstly, functional connectivity analysis and graphical theory were jointly employed. The functional connectivity and graphical indices computed using the preprocessed fMRI data were then all fed into an auto-encoder parallelly for automatic feature extraction to predict the fluid intelligence. In order to improve the performance, tree regression and ridge regression models were stacked and fused automatically with weighted values. Finally, layers of auto-encoder were visualized to better illustrate the connectome patterns, followed by the evaluation of the performance to justify the mechanism of brain functions. Results: Our proposed method achieved the best performance with a 3.85 mean absolute deviation, 0.66 correlation coefficient and 0.42 R-squared coefficient; this model outperformed other state-of-the-art methods. It is also worth noting that the optimization of the biological pattern extraction was automated though the auto-encoder algorithm. Conclusion: The proposed method outperforms the state-of-the-art reports, also is able to effectively capture the biological patterns of functional connectivity during a naturalistic movie state for potential clinical explorations.

Funder

China Scholarship Council

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3