CLIP-Driven Few-Shot Species-Recognition Method for Integrating Geographic Information

Author:

Liu Lei1,Yang Linzhe1,Yang Feng123,Chen Feixiang123ORCID,Xu Fu123

Affiliation:

1. School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China

2. Engineering Research Center for Forestry-Oriented Intelligent Information Processing, National Forestry and Grassland Administration, Beijing 100083, China

3. State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China

Abstract

Automatic recognition of species is important for the conservation and management of biodiversity. However, since closely related species are visually similar, it is difficult to distinguish them by images alone. In addition, traditional species-recognition models are limited by the size of the dataset and face the problem of poor generalization ability. Visual-language models such as Contrastive Language-Image Pretraining (CLIP), obtained by training on large-scale datasets, have excellent visual representation learning ability and demonstrated promising few-shot transfer ability in a variety of few-shot species recognition tasks. However, limited by the dataset on which CLIP is trained, the performance of CLIP is poor when used directly for few-shot species recognition. To improve the performance of CLIP for few-shot species recognition, we proposed a few-shot species-recognition method incorporating geolocation information. First, we utilized the powerful feature extraction capability of CLIP to extract image features and text features. Second, a geographic feature extraction module was constructed to provide additional contextual information by converting structured geographic location information into geographic feature representations. Then, a multimodal feature fusion module was constructed to deeply interact geographic features with image features to obtain enhanced image features through residual connection. Finally, the similarity between the enhanced image features and text features was calculated and the species recognition results were obtained. Extensive experiments on the iNaturalist 2021 dataset show that our proposed method can significantly improve the performance of CLIP’s few-shot species recognition. Under ViT-L/14 and 16-shot training species samples, compared to Linear probe CLIP, our method achieved a performance improvement of 6.22% (mammals), 13.77% (reptiles), and 16.82% (amphibians). Our work provides powerful evidence for integrating geolocation information into species-recognition models based on visual-language models.

Funder

National Key R&D Program of China

Emergency Open Competition Project of National Forestry and Grassland Administration

Outstanding Youth Team Project of Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3