Improving the Concrete Crack Detection Process via a Hybrid Visual Transformer Algorithm

Author:

Shahin Mohammad1,Chen F. Frank1,Maghanaki Mazdak1,Hosseinzadeh Ali1ORCID,Zand Neda2ORCID,Khodadadi Koodiani Hamid3

Affiliation:

1. Mechanical Engineering Department, The University of Texas at San Antonio, San Antonio, TX 78249, USA

2. Computer Science Department, The University of Texas at San Antonio, San Antonio, TX 78249, USA

3. Civil & Environmental Engineering Department, The University of Texas at San Antonio, San Antonio, TX 78249, USA

Abstract

Inspections of concrete bridges across the United States represent a significant commitment of resources, given their biannual mandate for many structures. With a notable number of aging bridges, there is an imperative need to enhance the efficiency of these inspections. This study harnessed the power of computer vision to streamline the inspection process. Our experiment examined the efficacy of a state-of-the-art Visual Transformer (ViT) model combined with distinct image enhancement detector algorithms. We benchmarked against a deep learning Convolutional Neural Network (CNN) model. These models were applied to over 20,000 high-quality images from the Concrete Images for Classification dataset. Traditional crack detection methods often fall short due to their heavy reliance on time and resources. This research pioneers bridge inspection by integrating ViT with diverse image enhancement detectors, significantly improving concrete crack detection accuracy. Notably, a custom-built CNN achieves over 99% accuracy with substantially lower training time than ViT, making it an efficient solution for enhancing safety and resource conservation in infrastructure management. These advancements enhance safety by enabling reliable detection and timely maintenance, but they also align with Industry 4.0 objectives, automating manual inspections, reducing costs, and advancing technological integration in public infrastructure management.

Funder

US Office of Naval Research MEEP Program

US Department of Energy/NNSA

Lutcher Brown Distinguished Chair Professorship fund of the University of Texas at San Antonio

Publisher

MDPI AG

Reference106 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3