A Novel Trajectory Adjustment Mechanism-Based Prescribed Performance Tracking Control for Electro-Hydraulic Systems Subject to Disturbances and Modeling Uncertainties

Author:

Nguyen Manh HungORCID,Ahn Kyoung KwanORCID

Abstract

This paper proposes a novel active disturbance compensation framework for exactly positioning control of electro-hydraulic systems (EHSs) subject to parameter deviations, unknown dynamics, and uncertain external load without velocity measurement mechanism. In order to accurately estimate and then actively compensate for the effects of these uncertainties and disturbances on the system dynamics, a combination between an extended sliding mode observer (ESMO) and a linear extended state observer (LESO) is firstly established for position control of EHSs. In addition, an inherited nonlinear filter-based trajectory planner with minor modifications is utilized to overcome the barriers of inappropriate desired trajectories which do not consider the system kinematic and dynamic constraints. Furthermore, for the first time, the command filtered (CF) approach and prescribed performance control (PPC) are successfully coordinated together and dexterously integrated into the backstepping framework to not only mitigate the computational cost significantly and avoid the “explosion of complexity” of the traditional backstepping design but also satisfy the predetermined transient tracking performance indexes including convergence rate, overshoot, and steady-state error. The stabilities of the observers and overall closed-loop system are rigorously proven by using the Lyapunov theory. Finally, comparative numerical simulations are conducted to demonstrate the advantages of the proposed approach.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3