The Systems Measurement of Mammalian Biotas, Part Two

Author:

Smith Charles H.1,Georges Patrick2ORCID,Nguyen Ngoc3

Affiliation:

1. Western Kentucky University (Prof. Emeritus), Bowling Green, KY 42101, USA

2. Graduate School of Public and International Affairs, University of Ottawa, Ottawa, ON K1N 6N5, Canada

3. Department of Mathematics, Western Kentucky University, Bowling Green, KY 42101, USA

Abstract

For a recent publication, the authors identified a seven-region model of mammal family distribution patterns, in which each unit contributes equally to the system’s overall statistical characteristics of diversity, despite its individual units having measurably different levels of diversity and endemism. This systemization presents a highly efficient descriptive model that can possibly be interpreted as a form of natural classification. An additional analysis of the same mode is described here, in which the seven-region model of the distribution of mammal families’ spatial affinities is shown to closely approach a most-probable-state arrangement, as assessed through combinatorics, raising some important questions about how macroevolutionary patterns might self-organize spatially. One of the possible practical applications of the overall approach is to areal representation; statistical moments of the underlying world patterns can be used to characterize faunal statuses at any individual location by relating the latter to the former. Through this approach, classical concepts such as corridors, tracks, and transition zones might be re-examined in a manner that better lends itself to hypothesis testing. An arbitrarily chosen bounded area, the conterminous United States, is treated in this fashion by way of illustration.

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3