Comparison between Novel Anatomical Locking Guide Plate and Conventional Locking Plate for Acetabular Fractures: A Finite Element Analysis

Author:

Liu Xiao12,Gao Jianpeng12,Wu Xiaoyong12,Deng Junhao12,Li Zijian12,Li Ran12,Zhang Licheng12,Liu Jianheng12,Li Ming12

Affiliation:

1. Department of Orthopaedics, The First Medical Center of the Chinese PLA General Hospital, No. 28 Fuxin Road, Beijing 100853, China

2. National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, No. 28 Fuxin Road, Beijing 100853, China

Abstract

The treatment of complex acetabular fractures remains a complicated clinical challenge. Our self-designed novel anatomical locking guide plate (NALGP) has previously shown promising potential in T-shaped acetabular fractures (TAF), but a direct comparison with conventional fixations is yet to be made. The TAF model was established based on a volunteer’s computer tomography data and then fixed with double column locking plates (DLP), a posterior column locking plate with anterior column screws (LPACS), and our NALGP. Forces of 200 N, 400 N, and 600 N were then loaded on the model vertically downward, respectively. The stress distribution and peaks and maximum displacements at three sites were assessed. We found that the stress area of all three plates was mainly concentrated around the fracture line, while only the matching screws of the NALGP showed no obvious stress concentration points. In addition, the NALGP and DLP showed significantly less fracture fragment displacement than the LPACS at the three main fracture sites. The NALGP was found to have less displacement than DLP at the posterior column and ischiopubic branch sites, especially under the higher loading forces of 400 N and 600 N. The fixation stability of the NALGP for TAF was similar to that of DLP but better than that of LPACS. Moreover, the NALGP and its matching screws have a more reasonable stress distribution under different loads of force and the same strength as the LPACS.

Funder

Subsidiary of the PLA Major Project

PLA General Hospital’s “3+1” Innovative Talent Training Program

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3