Oil Removal Technology for Water Injection in Low-Permeability Reservoirs: A Micro-Vortex Flow Approach

Author:

Zhao Dawei1,Xie Weihong1,Zhu Jingyi1,Li Bing1,Wang Lirong1,Chen Tao2,Sheng Yuxin3,Huang Xiujie4

Affiliation:

1. PetroChina Planning & Engineering Institute, Beijing 100083, China

2. School of Environment & Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100032, China

3. PetroChina Jidong Oilfield Company, Tangshan 063004, China

4. Sinochem Holdings Corporation Ltd., Beijing 100081, China

Abstract

Gravity settling is a widely employed technology that removes oil from produced water in oilfields. However, with the transition of reservoir development to low-permeability reservoirs, conventional produced water settling tanks face limitations in the treatment efficiency and coagulant dosage. This study presents an innovative approach that optimizes sedimentation tank structures and integrates micro-vortex flow technology to enhance coagulation and flocculation. Through chemical dosage experiments, comparative experiments, and long-term observation, the micro-vortex flow reactor demonstrates a 9.4% increase in oil removal efficiency while reducing the coagulant dosage by 30.0%. The MOR equipment achieved a 20.5% higher oil removal efficiency than conventional methods while maintaining effluent oil and suspended solids below 20 mg/L. The long-term observation experiment of MOR equipment further highlights oil removal efficiency of 94.2% and the micro-vortex reactor’s excellent anti-pollution performance. The MOR equipment significantly reduces the land occupancy area by over 50% compared to conventional methods, thanks to the implementation of micro-vortex flow technology that effectively addresses the limitations associated with traditional settling tanks. This study contributes to advancing efficient and sustainable practices in waterflooding reservoirs, particularly for meeting stringent standards of water injection in low-permeability oilfields.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3