miR-27a Targeting PIK3R3 Regulates the Proliferation and Apoptosis of Sheep Hair Follicle Stem Cells

Author:

Yu Mengqi,Li Lanlan,Liu Meng,Wang Lei,Gao Xiaoxiao,Zhou Lisheng,Liu Nan,He Jianning

Abstract

Micro RNAs are regulatory factors in tissue development, organ formation, cell growth, apoptosis and other biological processes. In particular, several miRNAs are related to the development of hair follicles. Here, we investigated the effect of the targeting of PIK3R3 by miR-27a on the AKT/MTOR pathway and on the proliferation and apoptosis of hair follicle stem cells (HFSCs) in sheep. Knockdown of the expression of PIK3R3 was found to significantly inhibit the proliferation and promote the apoptosis of HFSCs. Similarly, a miR-27a mimic significantly inhibited the proliferation and promoted the apoptosis of HFSCs. The miR-27a mimic was also shown to significantly inhibit the expression of PIK3R3, AKT, and MTOR and the phosphorylation of AKT and MTOR, while a miR-27a inhibitor increased the expression of these genes. The presence of an miR-27a binding site in the 3′ UTR of PIK3R3 was identified by a bioinformatics analysis, and the interaction was verified with a dual-luciferase reporter assay. The expression of PIK3R3 mRNA and protein was negatively correlated with the presence of miR-27a, which suggests that this interaction may be involved in the biological impacts on proliferation and apoptosis. Thus, this study demonstrates that miR-27a plays a potential role in the proliferation and apoptosis of sheep hair follicle stem cells by targeting PIK3R3, which can be used to design new methods to improve sheep wool.

Funder

Natural Science Foundation of Shandong Province

Shandong Province Agricultural Variety Program

Central Leading Local Science and Technology Development Funds

Earmarked Fund for Modern China Wool & Cashmore Technology Research System

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3