Author:
Ahn Yong-keon,Jo Yong Nam,Cho Woosuk,Yu Ji-Sang,Kim Ki Jae
Abstract
Understanding the capacity fading mechanism of the LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode materials is crucial for achieving long-lasting lithium-ion batteries with high energy densities. In this study, we investigated the factors affecting the capacity fading of NCM811 during repeated cycling at high temperatures. We found that the change in the c-axis length during charging and discharging is the main cause of the formation and propagation of microcracks in the primary particles of NCM811. In addition, the electrolyte is decomposed on the microcrack surfaces and, consequently, by-products are formed on the particle surface, increasing the impedance and resulting in poor electronic and ionic connectivity between the primary particles of NCM811. In addition, the transition metals in the NCM811 cathode material are dissolved in the electrolyte from the newly formed microcrack surface between primary particles. Therefore, the electrolyte decomposition and transition metal dissolution on the newly formed surface are the major deteriorative effects behind the capacity fading in NCM811.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献