Insecticidal Activity of Lemongrass Essential Oil as an Eco-Friendly Agent against the Black Cutworm Agrotis ipsilon (Lepidoptera: Noctuidae)

Author:

Moustafa Moataz1,Awad Mona1ORCID,Amer Alia2,Hassan Nancy1,Ibrahim El-Desoky1,Ali Hayssam3ORCID,Akrami Mohammad4ORCID,Salem Mohamed5ORCID

Affiliation:

1. Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt

2. Medicinal and Aromatic Plants Department, Horticulture Research Institute, Agricultural Research Center, Giza 12556, Egypt

3. Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

4. Department of Engineering, University of Exeter, Exeter EX4 4QF, UK

5. Forestry and Wood Technology Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt

Abstract

Background: The destructive insect pest Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae) is a polyphagous species targeting many economically important plants. The extensive and arbitrary use of insecticides has resulted in the build-up of insecticide resistance and pesticide residues accumulating in food. Therefore, it is becoming evident that alternative pest management tools are needed to reduce risks to humans, the environment, and non-target organisms, and at the same time, they should be used in field application at the lowest cost. Methods: In view of this objective, the present study demonstrates the toxicity of lemongrass (Cymbopogon citratus (DC.) Stapf) essential oil (EO), against the black cutworm A. ipsilon under controlled laboratory conditions in terms of measuring the activity of peroxidase and detoxification enzymes. The chemical components of the EO were analyzed using GC–MS. Results: The results show that after 96 h post treatment, the LC15 and LC50 values were 427.67 and 2623.06 mg/L, respectively, of C. citratus EO on second-instar larvae of A. ipsilon. A slight significance in elongation of the larval duration with LC15 and LC50 value was found with control. By GC–MS analysis, the main compounds identified in the EO were α-citral and β-citral with percentages of 35.91%, and 35%, respectively. The oxidative stress indicates a significant increase in CAT and lipid peroxidase enzyme activity after 96 h post treatment at the LC15 and LC50. Conversely, the detoxification enzyme activity shows an inhibition of CarE and GST enzymes of larvae exposed to LC15 and LC50 values in response to C. citratus EO. Conclusions: The present data show that lemongrass EO has insecticidal activity against the black cutworm, A. ipsilon.

Funder

Researchers Supporting, King Saud University, Riyadh, Saudi Arabia.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3