Elevation and Human Disturbance Interactively Influence the Patterns of Insect Diversity on the Southeastern Periphery of the Tibetan Plateau

Author:

Liao Zhouyang1,Zhang Jinlu1,Shen Xuemei1,Zhu Mi1,Lan Xinlin1,Cui Junming1,Guan Yunfang1,Zhang Ying1,Deng Zhongjian1,Tang Tiantian1,Liu Fang2,Yang Darong3,Zhang Yuan14

Affiliation:

1. Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China

2. Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China

3. Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China

4. Key Laboratory of Southwest Mountain Forest Resources Conservation and Utilization, Ministry of Education, Kunming 650224, China

Abstract

The maintenance of biodiversity and ecological balance heavily relies on the diversity of insects. In order to investigate the impacts of elevation and human disturbance, as well as their interactions on insect diversity, we conducted an intensive survey of insects in the Hengduan Mountain Range, which is situated on the southeastern periphery of the Tibetan Plateau in China. A total of 50 line transects were established in this study to investigate the impact of elevation and human disturbance on insect diversity and distribution patterns. Designed insect surveys were conducted at various elevations and levels of human disturbance, and statistical methods such as generalized linear modeling and redundancy analysis were employed for data analysis. The results of this study indicated a negative correlation between insect diversity and elevation. Additionally, moderate disturbance was found to have a positive impact on insect diversity to some extent. The explanatory power of the model for the distribution of insect diversity could be improved if elevation and human disturbance were included as an interaction effect into the model, and there were differences in the effects of human disturbances on insect diversity at different elevation levels. The highest insect diversity was observed under low disturbance conditions below elevation of ~2200 m, whereas above this threshold, insect diversity was the highest under moderate disturbance compared to low disturbance. The response of different insect taxa to the interactions of elevation and human disturbance varied. The findings imply that when formulating strategies for managing insect diversity, it is crucial to thoroughly consider the interaction of environmental factors and disturbance response of individual insect taxa.

Funder

National Natural Science Foundation of China

Fundamental Research Program of Yunnan Province, China

Young Top-Notch Talent of Yunnan Outstanding Talent Program

First Class Forestry Academic Subject in Yunnan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3