The Multifaceted Effects of Short-Term Acute Hypoxia Stress: Insights into the Tolerance Mechanism of Propsilocerus akamusi (Diptera: Chironomidae)

Author:

Zhang Yao123,Zhang Qing-Ji4,Xu Wen-Bin5,Zou Wei1,Xiang Xian-Ling23ORCID,Gong Zhi-Jun13,Cai Yong-Jiu13ORCID

Affiliation:

1. Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China

2. School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China

3. Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu 241002, China

4. School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China

5. College of Animal Sciences, Zhejiang University, Hangzhou 310058, China

Abstract

Plenty of freshwater species, especially macroinvertebrates that are essential to the provision of numerous ecosystem functions, encounter higher mortality due to acute hypoxia. However, within the family Chironomidae, a wide range of tolerance to hypoxia/anoxia is displayed. Propsilocerus akamusi depends on this great tolerance to become a dominant species in eutrophic lakes. To further understand how P. akamusi responds to acute hypoxic stress, we used multi-omics analysis in combination with histomorphological characteristics and physiological indicators. Thus, we set up two groups—a control group (DO 8.4 mg/L) and a hypoxic group (DO 0.39 mg/L)—to evaluate enzyme activity and the transcriptome, metabolome, and histomorphological characteristics. With blue–black chromatin, cell tightness, cell membrane invagination, and the production of apoptotic vesicles, tissue cells displayed typical apoptotic features in the hypoxic group. Although lactate dehydrogenase (LDH), alcohol dehydrogenase (ADH), catalase (CAT), and Na+/K+ -ATPase (NKA) activities were dramatically enhanced under hypoxic stress, glycogen content, and superoxide dismutase (SOD) activities were significantly reduced compared to the control group. The combined analysis of the transcriptome and metabolome, which further demonstrated, in addition to carbohydrates, including glycogen, the involvement of energy metabolism pathways, including fatty acid, protein, trehalose, and glyoxylate cycles, provided additional support for the aforementioned findings. Lactate is the end product of glycogen degradation, and HIF-1 plays an important role in promoting glycogenolysis in acute hypoxic conditions. However, we discovered that the ethanol tested under hypoxic stress likely originates from the symbiodinium of P. akamusi. These results imply that some parameters related to energy metabolism, antioxidant enzyme activities, and histomorphological features may be used as biomarkers of eutrophic lakes in Chironomus riparius larvae. The study also provides a scientific reference for assessing toxicity and favoring policies to reduce their impact on the environment.

Funder

National Natural Science Foundation of China

Water Resources Science and Technology Program of Jiangsu

Youth Innovation Promotion Association CAS

Science and Technology Planning Project of NIGLAS

Publisher

MDPI AG

Subject

Insect Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3