VAPPD: Visual Analysis of Protein Pocket Dynamics

Author:

Guo DongliangORCID,Feng LiORCID,Shi Chuanbao,Cao Lina,Li Yu,Wang Yanfen,Xu Ximing

Abstract

Analyzing the intrinsic dynamic characteristics of protein pockets is a key aspect to understanding the functional mechanism of proteins, which is conducive to the discovery and development of drugs. At present, the research on the dynamic characteristics of pockets mainly focuses on pocket stability, similarity, and physicochemical properties. However, due to the high complexity and diversity of high-dimensional pocket data in dynamic processes, this work is challenging. In this paper, we explore the dynamic characteristics of protein pockets based on molecular dynamics (MD) simulation trajectories. First, a dynamic pocket shape representation method combining topological feature data is proposed to improve the accuracy of pocket similarity calculation. Secondly, a novel high-dimensional pocket similarity calculation method based on pocket to vector dynamic time warp (P2V-DTW) is proposed to solve the correlation calculation problem of unequal length sequences. Thirdly, a visual analysis system of protein dynamics (VAPPD) is proposed to help experts study the characteristics of high-dimensional dynamic pockets in detail. Finally, the efficiency of our approach is demonstrated in case studies of GPX4 and ACE2. By observing the characteristic changes of pockets under different spatiotemporal scales, especially the motion correlation between pockets, we can find the allosteric pockets. Experts in the field of biomolecules who cooperated with us confirm that our method is efficient and reliable, and has potential for high-dimensional dynamic pocket data analysis.

Funder

National Key R&D Program of China and the National Science Foundation of China

Natural Science Foundation of Hebei Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3