Expression Profiles of Circulating MicroRNAs in XELOX-Chemotherapy-Induced Peripheral Neuropathy in Patients with Advanced Gastric Cancer

Author:

Ju YeongdonORCID,Seol Young Mi,Kim Jungho,Jin HyunwooORCID,Choi Go-EunORCID,Jang AeleeORCID

Abstract

Gastric cancer (GC) is one of the most common cancers and a leading cause of cancer deaths around the world. Chemotherapy is one of the most effective treatments for cancer patients, and has remarkably enhanced survival rates. However, it has many side effects. Recently, microRNAs (miRNAs) have been intensively studied as potential biomarkers for cancer diagnosis and treatment monitoring. However, definitive biomarkers in chemotherapy-induced peripheral neuropathy (CIPN) are still lacking. The aim of this study was to identify the factors significant for neurological adverse events in GC patients receiving XELOX (oxaliplatin and capecitabine) chemotherapy. The results show that XELOX chemotherapy induces changes in the expression of hsa-miR-200c-3p, hsa-miR-885-5p, and hsa-miR-378f. Validation by qRT-PCR demonstrated that hsa-miR-378f was significantly downregulated in CIPN. Hsa-miR-378f was identified as showing a statistically significant correlation in GC patients receiving XELOX chemotherapy according to the analysis of differentially expressed (DE) miRNAs. Furthermore, 34 potential target genes were predicted using a web-based database for miRNA target prognostication and functional annotations. The identified genes are related to the peptidyl-serine phosphorylation and regulation of alternative mRNA splicing with enrichment in the gastric cancer, neurotrophin, MAPK, and AMPK signaling pathways. Collectively, these results provide information useful for developing promising strategies for the treatment of XELOX-chemotherapy-induced peripheral neuropathy.

Funder

The National Research Foundation of Korea (NRF) grant funded by the Korea government

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3