Laparoscopic Video Analysis Using Temporal, Attention, and Multi-Feature Fusion Based-Approaches

Author:

Jalal Nour Aldeen12ORCID,Alshirbaji Tamer Abdulbaki12ORCID,Docherty Paul David13ORCID,Arabian Herag1ORCID,Laufer Bernhard1ORCID,Krueger-Ziolek Sabine1ORCID,Neumuth Thomas2ORCID,Moeller Knut134ORCID

Affiliation:

1. Institute of Technical Medicine (ITeM), Furtwangen University, 78054 Villingen-Schwenningen, Germany

2. Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, 04103 Leipzig, Germany

3. Department of Mechanical Engineering, University of Canterbury, Christchurch 8041, New Zealand

4. Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany

Abstract

Adapting intelligent context-aware systems (CAS) to future operating rooms (OR) aims to improve situational awareness and provide surgical decision support systems to medical teams. CAS analyzes data streams from available devices during surgery and communicates real-time knowledge to clinicians. Indeed, recent advances in computer vision and machine learning, particularly deep learning, paved the way for extensive research to develop CAS. In this work, a deep learning approach for analyzing laparoscopic videos for surgical phase recognition, tool classification, and weakly-supervised tool localization in laparoscopic videos was proposed. The ResNet-50 convolutional neural network (CNN) architecture was adapted by adding attention modules and fusing features from multiple stages to generate better-focused, generalized, and well-representative features. Then, a multi-map convolutional layer followed by tool-wise and spatial pooling operations was utilized to perform tool localization and generate tool presence confidences. Finally, the long short-term memory (LSTM) network was employed to model temporal information and perform tool classification and phase recognition. The proposed approach was evaluated on the Cholec80 dataset. The experimental results (i.e., 88.5% and 89.0% mean precision and recall for phase recognition, respectively, 95.6% mean average precision for tool presence detection, and a 70.1% F1-score for tool localization) demonstrated the ability of the model to learn discriminative features for all tasks. The performances revealed the importance of integrating attention modules and multi-stage feature fusion for more robust and precise detection of surgical phases and tools.

Funder

the German Federal Ministry of Research and Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3