Experimental and Numerical Investigation on the Layering Configuration Effect to the Laminated Aluminium/Steel Panel Subjected to High Speed Impact Test

Author:

Rahman Najihah,Abdullah Shahrum,Abdullah Mohamad,Zamri Wan,Omar Mohd,Sajuri Zainuddin

Abstract

This paper presents the effect of laminated aluminium-steel panel with different configurations in a high-speed impact test. Layering aluminium plate with high strength steel has become an interest in reducing the overall density of armour vehicle body while improving the ballistic resistance. Different layering configurations differ in laminated panel performance. Two layering configurations of double-layered panel achieving 25% of existing panel weight reduction were tested using experiment and computational method to investigate their behaviours when impacted with 7.62-mm full metal jacket at velocity range of 800–850 m/s. The ballistic performance of each configuration plate in terms of ballistic limit velocity, penetration process and permanent deformation was quantified and considered. Laminated panel with aluminium as the front layer reduced the ballistic performance of existing panel to 50% and the other panel maintained its performance. Thus, the laminated panel with aluminium as the back layer can be used in designing a protective structure for armoured vehicle while maintaining the performance of the existing vehicle in achieving weight reduction.

Funder

Ministry of Higher Education, Malaysia

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3