An Open-Label Case Series of Glutathione Use for Symptomatic Management in Children with Autism Spectrum Disorder

Author:

Radwan Karam1ORCID,Wu Gary2ORCID,Banks-Word Kamilah1,Rosenberger Ryan1

Affiliation:

1. Department of Psychiatry & Behavioral Neuroscience, University of Chicago Medical Center, Chicago, IL 60637, USA

2. Department of Psychiatry & Behavioral Sciences, Rosalind Franklin University, North Chicago, IL 60064, USA

Abstract

Autism spectrum disorder (ASD) is a type of neurodevelopmental disorder that has been diagnosed in an increasing number of children around the world. The existing data suggest that early diagnosis and intervention can improve ASD outcomes. The causes of ASD remain complex and unclear, and there are currently no clinical biomarkers for autism spectrum disorder. There is an increasing recognition that ASD might be associated with oxidative stress through several mechanisms including abnormal metabolism (lipid peroxidation) and the toxic buildup of reactive oxygen species (ROS). Glutathione acts as an antioxidant, a free radical scavenger and a detoxifying agent. This open-label pilot study investigates the tolerability and effectiveness of oral supplementation with OpitacTM gluthathione as a treatment for patients with ASD. The various aspects of glutathione OpitacTM glutathione bioavailability were examined when administered by oral routes. The absorption of glutathione from the gastrointestinal tract has been recently investigated. The results of this case series suggest that oral glutathione supplementation may improve oxidative markers, but this does not necessarily translate to the observed clinical improvement of subjects with ASD. The study reports a good safety profile of glutathione use, with stomach upset reported in four out of six subjects. This article discusses the role of the gut microbiome and redox balance in ASD and notes that a high baseline oxidative burden may make some patients poor responders to glutathione supplementation. In conclusion, an imbalance in redox reactions is only one of the many factors contributing to ASD, and further studies are necessary to investigate other factors, such as impaired neurotransmission, immune dysregulation in the brain, and mitochondrial dysfunction.

Funder

Pritzker School of Medicine, The University of Chicago

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3