Gasification of Coal by CO2: The Impact of the Heat Transfer Limitation on the Progress, Reaction Rate and Kinetics of the Process

Author:

Czajka Krzysztof M.

Abstract

This paper presents the impact of thermal lag on the progress of different coal types’ gasification by CO2. The analysis was performed using thermogravimetry and numerical modeling. Experiments were carried out at a heating rate of 1–50 Kmin−1 and a temperature ranging from 383 to 1173 K. The developed numerical model enabled the determination of a true sample temperature considering the gasification process to consist of two single-step consecutive reactions. Analysis revealed that the average thermal lag in CO2 is about 11% greater than that in N2, which is related to the properties of CO2 itself and the occurrence of the char–CO2 reaction. The onset temperature of the reverse Boudouard reaction depends on the type of fuel; however, no simple relationship with the coal rank was found. Thermal lag has an impact on the kinetic parameter Aα0.5 describing devolatilization, up to 19.8%, while in the case of the char–CO2 reaction, this influence is expected to be even greater. The performed analysis proved that disregarding thermal lag may significantly hinder the interpretation of the analyzed processes; thus, TG experiments should be carried out with a low heating rate, or at the post-processing stage, a thermal lag model needs to be employed.

Funder

Narodowe Centrum Badań i Rozwoju

National Research Foundation of South Africa

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference83 articles.

1. Global Energy Review 2020: The Impacts of the Covid-19 Crisis on Global Energy Demand and CO2 Emissionshttps://iea.blob.core.windows.net/assets/7e802f6a-0b30-4714-abb1-46f21a7a9530/Global_Energy_Review_2020.pdf

2. The future of coal in a carbon-constrained climate

3. The Future of Coal: Options in a Carbon-Constrained Worldhttps://energy.mit.edu/wp-content/uploads/2007/03/MITEI-The-Future-of-Coal.pdf

4. The value of CCUS in transitions to net-zero emissions

5. Clean Coal Engineering Technology;Miller,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3