Spatial Correlation of Landscape Fragmentation and Ecological Sensitivity in China’s Giant Panda National Park and Surrounding Areas

Author:

Xia Huimei1,Lu Feng1,Li Junjie2

Affiliation:

1. School of Design, Anhui Polytechnic University, Wuhu 241000, China

2. College of Fashion and Design, Donghua University, Shanghai 200051, China

Abstract

The Giant Panda National Park (GPNP) and its surrounding areas constitute a comprehensive ecosystem aimed at protecting the natural habitat of giant pandas, maintaining biodiversity, and ensuring ecological balance. Investigating the spatial correlation between landscape pattern indices and ecological sensitivity (ES) in this area is a crucial step in the construction of ecological civilization and contributes significantly to ecological conservation, restoration, and environmental management. This study utilized Geographic Information Systems (GIS) and Fragstats software to select nine ecological evaluation factors and four landscape pattern indices to comprehensively evaluate the ES and landscape patterns of the GPNP and its surrounding areas. This study discovered that the ecological sensitivity of the GPNP is substantially higher than that of the neighboring areas, with the northern Qionglai Mountain area and the western Minshan area showing the highest concentrations of exceptionally high sensitivity. Highly sensitive areas account for 35.22% of the study region, concentrated in areas within the national park, except the Qinling area, as well as the western and southern surrounding areas. The distribution of moderately sensitive areas is more uniform, while low and insensitive areas are found primarily in the northern and eastern areas, along with the national park’s environs. Patch density (PD) within the GPNP is lower than in surrounding areas, with higher PD in the northern and central parts. The landscape division index (DIVISION) decreases from west to east, and the landscape disturbance index (LDI) is significantly lower within the national park than in surrounding areas, with small areas of high LDI in the entire study region. Moran’s index analysis of the GPNP and its surrounding areas shows that ecological sensitivity is positively correlated with landscape pattern indices (PD, SPLIT, DIVISION, and LDI), with the strongest correlation between DIVISION and ecological sensitivity. Spatially, the internal areas of the national park have lower landscape pattern indices but higher ecological sensitivity, while the eastern region exhibits severe landscape fragmentation. Major clusters of high and low values are found around the Qionglai-Daxiangling area, indicating that these areas of high ecological sensitivity have complex landscape structures, numerous habitat edges, and significant impacts on biodiversity and ecological processes. Overall, the areas surrounding the GPNP exhibit lower ecological sensitivity levels and higher landscape fragmentation, emphasizing the need for focused ecological protection in the northern part of the QLS region and the western part of the MS region. Additionally, attention should be given to the impact of landscape fragmentation in the surrounding areas in the interior of the GPNP. These results provide scientific evidence for the sustainable development of the GPNP and its surrounding areas.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3