Enhancing Urban Sustainability and Resilience: Employing Digital Twin Technologies for Integrated WEFE Nexus Management to Achieve SDGs

Author:

Shehadeh Ali1ORCID,Alshboul Odey2ORCID,Arar Mai3ORCID

Affiliation:

1. Department of Civil Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan

2. Department of Civil Engineering, Faculty of Engineering, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan

3. Department of Architecture, Faculty of Engineering, Al Al-Bayt University, Mafraq 25113, Jordan

Abstract

This research explores the application of digital twin technologies to progress the United Nations’ Sustainable Development Goals (SDGs) within the water-energy-food-environment (WEFE) nexus management in urban refugee areas. The study in Irbid Camp utilizes a detailed 3D Revit model combined with real-time data and community insights processed through advanced machine learning algorithms. An examination of 450 qualitative interviews indicates an 80% knowledge level of water conservation practices among the community but only 35% satisfaction with the current management of resources. Predictive analytics forecast a 25% increase in water scarcity and an 18% surge in energy demand within the next ten years, prompting the deployment of sustainable solutions such as solar energy installations and enhanced rainwater collection systems. By simulating resource allocation and environmental impacts, the digital twin framework helps in planning urban development in line with SDGs 6 (Clean Water and Sanitation), 7 (Affordable and Clean Energy), 11 (Sustainable Cities and Communities), and 12 (Responsible Consumption and Production). This investigation highlights the capacity of digital twin technology to improve resource management, increase community resilience, and support sustainable urban growth, suggesting its wider implementation in comparable environments.

Funder

Royal Academy of Engineering

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3