Impact of PEG Content on Doxorubicin Release from PLGA-co-PEG Nanoparticles

Author:

Cardoso Maria Margarida1ORCID,Peça Inês N.1,Bicho Ana2

Affiliation:

1. LAQV-REQUIMTE, Departamento de Química, Nova School of Science and Technology (NOVA FCT), Universidade NOVA de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal

2. Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal

Abstract

Nanoparticles (NPs) have become attractive vehicles for drug delivery in cancer therapy due to their ability to accumulate in tumours and mitigate side effects. This study focuses on the production of doxorubicin (DOX)-loaded NPs comprising Poly (lactic-co-glycolic acid)-Polyethylene glycol with varying PEG proportions and the examination of their impact on drug release kinetics. DOX-loaded NPs, composed of PLGA-co-PEG with PEG contents of 0%, 5%, 10%, and 15%, were synthesized by the solvent evaporation technique, exhibited spherical morphology, and had sizes ranging from 420 nm to 690 nm. In vitro drug release studies revealed biphasic profiles, with higher PEG contents leading to faster and more extensive drug release. The Baker–Lonsdale model demonstrated the best fit to the drug release data, indicating that the release process is diffusion-controlled. The diffusion coefficients for DOX determined ranged from 6.3 × 10−18 to 7.55 × 10−17 cm2s−1 and exhibited an upward trend with increasing PEG content in the polymer. In vitro cytotoxicity tests with CHO cells showed that unloaded NPs are non-toxic, while DOX-loaded PLGA-PEG 15% NPs induced a greater decrease in cellular viability compared to their PLGA counterparts. A mathematical relationship between the diffusion coefficient and PEG percentage was derived, providing a practical tool for optimizing DOX release profiles.

Funder

FCT - Fundação para a Ciência e a Tecnologia / MCTES, Portugal

Publisher

MDPI AG

Reference28 articles.

1. Nanomedicine—A tremendous research opportunity for analytical chemists;Thompson;Analyst,2004

2. Nanomedicine: Current status and future prospects;Moghimi;FASEB J.,2005

3. Kreuter, J. (1994). Nanoparticles. Colloidal Drug Delivery Systems, Marcel Dekker.

4. Antibody-conjugated nanoparticles for therapeutic applications;Cardoso;Curr. Med. Chem.,2012

5. Mathematical modeling and simulation of drug release from microspheres: Implications to drug delivery systems;Arifin;Adv. Drug Deliv. Rev.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3