A Novel IoT-Enabled Wireless Sensor Grid for Spatial and Temporal Evaluation of Tracer Gas Dispersion

Author:

Tsang Tsz-Wun1ORCID,Mui Kwok-Wai1,Wong Ling-Tim1ORCID,Law Kwok-Yung2,Shek Ka-Wing1

Affiliation:

1. Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong, China

2. Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, China

Abstract

Current IoT applications in indoor air focus mainly on general monitoring. This study proposed a novel IoT application to evaluate airflow patterns and ventilation performance using tracer gas. The tracer gas is a surrogate for small-size particles and bioaerosols and is used in dispersion and ventilation studies. Prevalent commercial tracer-gas-measuring instruments, although highly accurate, are relatively expensive, have a long sampling cycle, and are limited in the number of sampling points. To enhance the spatial and temporal understanding of tracer gas dispersion under the influence of ventilation, a novel application of an IoT-enabled, wireless R134a sensing network using commercially available small sensors was proposed. The system has a detection range of 5–100 ppm and a sampling cycle of 10 s. Using Wi-Fi communication, the measurement data are transmitted to and stored in a cloud database for remote, real-time analysis. The novel system provides a quick response, detailed spatial and temporal profiles of the tracer gas level, and a comparable air change rate analysis. With multiple units deployed as a wireless sensing network, the system can be applied as an affordable alternative to traditional tracer gas systems to identify the dispersion pathway of the tracer gas and the general airflow direction.

Funder

Collaborative Research Fund (CRF) COVID-19 and Novel Infectious Disease (NID) Research Exercise, Research Grants Council of the Hong Kong Special Administrative Region, China

PolyU Internal Funding

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3