A Novel Flexible Geographically Weighted Neural Network for High-Precision PM2.5 Mapping across the Contiguous United States

Author:

Wang Dongchao1ORCID,Cao Jianfei1ORCID,Zhang Baolei1,Zhang Ye2,Xie Lei2

Affiliation:

1. College of Geography and Environment, Shandong Normal University, Jinan 250358, China

2. Shandong Provincial Territorial Spatial Ecological Restoration Center, Jinan 250014, China

Abstract

Air quality degradation has triggered a large-scale public health crisis globally. Existing machine learning techniques have been used to attempt the remote sensing estimates of PM2.5. However, many machine learning models ignore the spatial non-stationarity of predictive variables. To address this issue, this study introduces a Flexible Geographically Weighted Neural Network (FGWNN) to estimate PM2.5 based on multi-source remote sensing data. FGWNN incorporates the Flexible Geographical Neuron (FGN) and Geographical Activation Function (GWAF) within the framework of Artificial Neural Network (ANN) to capture the intricate spatial non-stationary relationships among predictive variables. A robust air quality remote sensing estimation model was constructed using remote sensing data of Aerosol Optical Depth (AOD), Normalized Difference Vegetation Index (NDVI), Temperature (TMP), Specific Humidity (SPFH), Wind Speed (WIND), and Terrain Elevation (HGT) as inputs, and Ground-Based PM2.5 as the observation. The results indicated that FGWNN successfully generates PM2.5 remote sensing data with a 2.5 km spatial resolution for the contiguous United States (CONUS) in 2022. It exhibits higher regression accuracy compared to traditional ANN and Geographically Weighted Regression (GWR) models. FGWNN holds the potential for applications in high-precision and high-resolution remote sensing scenarios.

Funder

Shandong Province Undergraduate Teaching Reform Project

Jinan City-School Integration Project

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province, China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3