A GIS-Based Framework for Synthesizing City-Scale Long-Term Individual-Level Spatial–Temporal Mobility

Author:

Yao Yao1,Jiang Yinghong1,Yu Qing2ORCID,Yuan Jian2,Li Jiaxing2,Xu Jian3,Liu Siyuan3,Zhang Haoran2ORCID

Affiliation:

1. Shanghai Urban Construction Design and Research Institute (Group) Co., Ltd., Shanghai 200125, China

2. School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen 518055, China

3. Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China

Abstract

Human mobility data are crucial for transportation planning and congestion management. However, challenges persist in accessing and using raw mobility data due to privacy concerns and data quality issues such as redundancy, missing values, and noise. This research introduces an innovative GIS-based framework for creating individual-level long-term spatio-temporal mobility data at a city scale. The methodology decomposes and represents individual mobility by identifying key locations where activities take place and life patterns that describe transitions between these locations. Then, we present methods for extracting, representing, and generating key locations and life patterns from large-scale human mobility data. Using long-term mobility data from Shanghai, we extract life patterns and key locations and successfully generate the mobility of 30,000 virtual users over seven days in Shanghai. The high correlation (R² = 0.905) indicates a strong similarity between the generated data and ground-truth data. By testing the combination of key locations and life patterns from different areas, the model demonstrates strong transferability within and across cities, with relatively low RMSE values across all scenarios, the highest being around 0.04. By testing the representativeness of the generated mobility data, we find that using only about 0.25% of the generated individuals’ mobility is sufficient to represent the dynamic changes of the entire urban population on a daily and hourly resolution. The proposed methodology offers a novel tool for generating long-term spatiotemporal mobility patterns at the individual level, thereby avoiding the privacy concerns associated with releasing real data. This approach supports the broad application of individual mobility data in urban planning, traffic management, and other related fields.

Funder

Shanghai Super Postdoctoral Funding Project

Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data-driven bottleneck detection on Tehran highways;Transportation Engineering;2024-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3