Abstract
For decades, Ta/TaN has been the industry standard for a diffusion barrier against Cu in interconnect metallisation. The continuous miniaturisation of transistors and interconnects into the nanoscale are pushing conventional materials to their physical limits and creating the need to replace them. Binary metallic systems, such as Ru-W, have attracted considerable attention as possible replacements due to a combination of electrical and diffusion barrier properties and the capability of direct Cu electroplating. The process of Cu electrodeposition on Ru-W is of fundamental importance in order to create thin, continuous, and adherent films for advanced interconnect metallisation. This work investigates the effects of the current density and application method on the electro-crystallisation behaviour of Cu. The film structure, morphology, and chemical composition were assessed by digital microscopy, atomic force microscopy, scanning and transmission electron microscopies, energy-dispersive X-ray spectroscopy, and X-ray diffraction. The results show that it was possible to form a thin Cu film on Ru-W with interfacial continuity for current densities higher than 5 mA·cm−2; however, the substrate regions around large Cu particles remained uncovered. Pulse-reverse current application appears to be more beneficial than direct current as it decreased the average Cu particle size.
Funder
Fundação para a Ciência e Tecnologia
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献