Radiolysis Studies of Oxidation and Nitration of Tyrosine and Some Other Biological Targets by Peroxynitrite-Derived Radicals

Author:

Folkes Lisa K.,Bartesaghi SilvinaORCID,Trujillo Madia,Wardman Peter,Radi RafaelORCID

Abstract

The widespread interest in free radicals in biology extends far beyond the effects of ionizing radiation, with recent attention largely focusing on reactions of free radicals derived from peroxynitrite (i.e., hydroxyl, nitrogen dioxide, and carbonate radicals). These radicals can easily be generated individually by reactions of radiolytically-produced radicals in aqueous solutions and their reactions can be monitored either in real time or by analysis of products. This review first describes the general principles of selective radical generation by radiolysis, the yields of individual species, the advantages and limitations of either pulsed or continuous radiolysis, and the quantitation of oxidizing power of radicals by electrode potentials. Some key reactions of peroxynitrite-derived radicals with potential biological targets are then discussed, including the characterization of reactions of tyrosine with a model alkoxyl radical, reactions of tyrosyl radicals with nitric oxide, and routes to nitrotyrosine formation. This is followed by a brief outline of studies involving the reactions of peroxynitrite-derived radicals with lipoic acid/dihydrolipoic acid, hydrogen sulphide, and the metal chelator desferrioxamine. For biological diagnostic probes such as ‘spin traps’ to be used with confidence, their reactivities with radical species have to be characterized, and the application of radiolysis methods in this context is also illustrated.

Funder

University of the Republic

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference103 articles.

1. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein);J. Biol. Chem.,1969

2. Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. Its role in degradation of hyaluronic acid by a superoxide-generating system;FEBS Lett.,1978

3. Halliwell, B., and Gutteridge, J.M.C. (1999). Free Radicals in Biology and Medicine, Oxford University Press. [3rd ed.].

4. Chemical, biological and medical controversies surrounding the Fenton reaction;Prog. React. Kinet. Mech.,2003

5. Fenton chemistry: An introduction;Radiat. Res.,1996

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3