Looking at Developmental Neurotoxicity Testing from the Perspective of an Invertebrate Embryo

Author:

Bicker GerdORCID

Abstract

Developmental neurotoxicity (DNT) of chemical compounds disrupts the formation of a normal brain. There is impressive progress in the development of alternative testing methods for DNT potential in chemicals, some of which also incorporate invertebrate animals. This review briefly touches upon studies on the genetically tractable model organisms of Caenorhabditis elegans and Drosophila melanogaster about the action of specific developmental neurotoxicants. The formation of a functional nervous system requires precisely timed axonal pathfinding to the correct cellular targets. To address this complex key event, our lab developed an alternative assay using a serum-free culture of intact locust embryos. The first neural pathways in the leg of embryonic locusts are established by a pair of afferent pioneer neurons which use guidance cues from membrane-bound and diffusible semaphorin proteins. In a systematic approach according to recommendations for alternative testing, the embryo assay quantifies defects in pioneer navigation after exposure to a panel of recognized test compounds for DNT. The outcome indicates a high predictability for test-compound classification. Since the pyramidal neurons of the mammalian cortex also use a semaphorin gradient for neurite guidance, the assay is based on evolutionary conserved cellular mechanisms, supporting its relevance for cortical development.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference116 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3